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Abstract

This paper concerns scheduling policies in a surveillance system aimed at detecting

a terrorist attack in time. Terrorist suspects arriving at a public area are subject

to continuous monitoring, while a surveillance team takes their biometric signatures

and compare them with records stored in a terrorist database. Because the surveil-

lance team can screen only one terrorist suspect at a time, the team faces a dynamic

scheduling problem among the suspects. We build a M/G/1 queue with two types

of customers—red and white—to study this problem. Both types of customers are

impatient, but the reneging time distributions are different. The server only receives

reward by serving a red customer, and can use the time a customer has spent in the

queue to deduce its likely type. In a few special cases, a simple service rule—such as

the first-come-first-serve rule—is optimal. We explain why the problem is in general

difficult, and develop a heuristic policy motivated by the fact that terrorist attacks are

rare events.

Keywords: homeland security, counterterrorism, multiclass queue, reneging, dynamic schedul-

ing.
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1 Introduction

Terrorist attacks—such as bombing, assassination of political figures, and release of poison

gas in a crowd—are serious threats in many regions of the world. A significant terrorist

attack occured in 1972 at a ticket counter in Lod International airport near Tel Aviv, Israel,

where a three-man hit squad from the Japanese Red Army killed 26 people and injured 78

more. More recent examples include the 9/11 attacks in 2001, the Bali bombings in 2002

and 2005, and the London bombings in 2005. Numerous instances in the past suggest that

terrorists often aim their attacks at crowded locations—such as restaurants, transportation

terminals, popular tourist spots, political rallies, and subway stations—to create chaos and

cause damage. The consequences of such terrorist attacks are casualties, damaged property,

and a major disruption of daily life.

Response actions for mitigating and countering terrorist attacks include political and

social policies that aim at deterring recruitment of terrorists, as well as protection of potential

targets by police or military forces. While the authorities spend considerable resources going

after the sources of such attacks—the terrorist organizations and their infrastructure—it is

still important to have the ability to thwart terrorist attacks by timely detection and effective

response. In this paper, we focus on that last line of defense—the problem of detecting, as

early as possible, a developing terrorist attack on a public target.

We consider a large public area—henceforth called arena—where people can come and

go freely, such as an airport lobby or a popular tourist attraction. An array of video cameras

monitors the arena and feeds real-time video streams to a control center, where a security

team screens people in two phases. In the first phase, people entering the arena are examined

visually and each person is immediately put into one of two groups: nonsuspects and sus-

pects. Only suspects are subject to the second-phase screening, which includes taking their

biometric signatures (such as face structure, hair color, etc.) and running them through

a terrorist database for comparison. In case of a positive match, the suspect is classified

as a potential terrorist and security forces are notified to take proper actions; otherwise,

the suspect is reclassified as a nonsuspect and the security team moves on to conduct the

second-phase screening on another suspect. Because in the second phase, the security team

can screen only one suspect at a time, the team faces a dynamic scheduling problem among

the suspects with the goal to maximize the probability of detecting a terrorist attack in time.
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Two observations motivate our research problem. First, because the second-phase screen-

ing takes time, the security team may not be able to inspect all suspects before they leave

the arena. Second, because a terrorist’s intention and action are different from those of other

people in the arena, the distribution of the time he spends in the arena may be different too.

Consequently, by carefully choosing which suspect to inspect next, one could potentially

increase the probability of detecting a terrorist attack in time. In this paper, we develop a

queueing model with impatient customers of unknown identity to analyze this problem, and

draw insights into the effect of scheduling policies on such a surveillance system. Several

attempts have recently been made to model and analyze detection and response actions as-

sociated with counterterrorism and homeland security; for example, see [7, 9, 10, 11, 13, 19].

However, we are not aware of any work that addresses a closely related problem.

The contribution of this paper is twofold. From a theoretical standpoint, we build a

queueing model with impatient customers that describes the antiterrorist surveillance system.

There are two types of customers—terrorists and nonterrorists. The novelty of this queueing

model is that only one type of customer (terrorists) is worth serving, but the server does

not know a customer’s identify until service completion. From an application standpoint

point, we develop dynamic scheduling policies for an antiterrorist surveillance system that

can improve the probability of detecting a terrorist in a crowded area.

The rest of this paper is organized as follows. In Section 2, we discuss the operational

setting and develop a queueing model. In Section 3, we identify a few special cases where

the optimal policy can be explicitly determined. In Section 4, we discuss why the optimal

policy is difficult to derive in general, and develop a heuristic policy. Conclusions and future

research directions are discussed in Section 5.

2 The Model

In this section, we build a mathematical model to study the second-phase screening discussed

in Section 1. Suppose the suspects that are subject to the second-phase screening arrive

according to a Poisson process with rate λ. Each suspect is independently a red customer

(terrorist) with probability p, or a white customer (nonterrorist) with probability 1−p. It is

helpful to keep in mind that p is very small because terrorist attacks are rare events. Both

types of customers are impatient, and will leave the arena after a random amount of time
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regardless whether the second-phase screening has started. The time a red customer spends

in the arena—called reneging time in queueing theory—represents the time it takes for a

terrorist to initiate an attack. The time a white customer spends in the arena represents

the time an innocent civilian wonders in the arena. We assume that the reneging time

distribution of red customers FR(·) can be estimated from intelligence and past events, while

that of white customers FW (·) can be estimated from data.

The second-phase screening comprises a continuous monitoring of the suspect, while

running the suspect’s biometric signature through a terrorist database for comparison. In

our queueing model, the security team is the server who provides service—second-phase

screening—to customers one at a time. The service time follows a distribution function

FS(·), independent of the customer’s identity. The objective of the server is to detect a red

customer in time so that the security forces can take proper actions to prevent or mitigate

the attack. In other words, only red customers are valuable for service. The server, however,

cannot tell the identity of a customer until after the service.

To define an objective function of the problem, note that whereas a customer waiting in

queue may depart the system due to his impatience, a customer in service will depart the

system either due to his impatience or due to service completion, whichever occurs first. If

the departing customer is white, the process continues; in case the departing white customer

was in service, the server becomes available and immediately chooses another customer in

the queue to serve. The process ends as soon as a red customer departs the system for the

first time, which includes three possible scenarios. First, if the red customer departs before

service is initiated, the server fails and receives a reward of 0, because a terrorist attack

takes place without prior warning and the damage will be at its greatest. Second, if the

red customer departs due to service completion, the server succeeds and receives a reward

of 1, because the screening team identifies the terrorist in time to prevent the attack. Last,

if the red customer departs while in service—due to the initiation of an attack—the server

succeeds partially and receives a reward of r ∈ [0, 1], because the security team identifies the

terrorist and can respond to it quickly. The rationale that the surveillance process stops as

soon as a red customer departs is that in all three scenarios the police or military force will

take in charge immediately—locking down the arena, evacuating the civilians, etc.—which

makes continual surveillance irrelevant. Therefore, the objective of the server is to schedule

the service sequence in real time in order to maximize the expected value of the reward when
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the surveillance process ends. Note that the server may still fail even when the first arriving

red customer enters service, because another red customer may arrive and renege before the

first arriving customer departs.

The server’s problem is to decide which customer in the queue to serve each time the

server becomes available. Specifically, we can delineate the state of the queue by

(t1, t2, . . . , tn), t1 > t2 > · · · > tn,

with the interpretation that there are n customers in the queue, and the ith customer has

spent ti time units in the queue. Note that we do not need to include the time since the last

customer arrival in the state space because the customer arrival process is a Poisson process.

A feasible policy is a function that maps a vector (t1, . . . , tn) to an index i ∈ {1, . . . , n}, for

n = 1, 2, . . ..

In queueing theory, there is extensive research that concerns dynamic scheduling of mul-

ticlass queueing networks. In a service center, different classes of customers bring in different

revenue and require different service times; for example, see Miller [14] and Harrison [5]. In a

production system, switching from one customer class to the other may require setup times;

for example, see Reiman and Wein [17] and Olsen [15]. For real-time scheduling problems

involving impatient customers, see Gaver et al. [2], Glazebrook et al. [3], Jouini et al. [8],

and the references therein. More recently, there is a growing interest in multiclass queues

in heavy traffic; for example, see Bertsimas and Mourtizinou [1], Plambeck et al. [16], and

Harrison and Zeevi [6]. The major distinction between our model and these earlier works

is that in our model, a customer does not reveal his identity upon arrival, and the server

can gather information about a customer’s identity by studying how long the customer has

spent in the queue. To the best of our knowledge, our work is the first to address this type

of problem.

3 Exponential Reneging Time Distribution

This section presents the case when both FR and FW are exponential. In Subsection 3.1 we

study the first-come-first-serve rule, and in Subsection 3.2 we study the last-come-first-serve

rule. In Subsection 3.3 we consider the random-selection rule, and compare all three rules

numerically. Although our primary interest is to study a nonpreemptive service system,
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in Subsection 3.4 we discuss a preemptive service system that complements our theoretical

results.

3.1 First-Come-First-Serve (FCFS) Rule

With the FCFS rule, the server always serves the customer who has spent the longest in the

queue. If the reneging time distributions for both red and white customers are exponential,

the next theorem presents a sufficient condition for the FCFS rule to be optimal. Note that

the theorem does not require the service time distribution FS to be exponential, neither does

it require the arrival process to be a Poisson process.

Theorem 3.1 If both FR and FW are exponential with respective rates θR < θW , then the

FCFS rule is optimal for any r ∈ [0, 1], for an arbitrary distribution function FS, and for an

arbitrary arrival process.

Proof: Consider an arbitrary state (t1, t2, . . . , tn) such that t1 > t2 > · · · > tn. We first

want to show that for any policy that does not start with customer 1, we can find a better

policy by starting with customer 1. The proof relies on an argument that involves stochastic

coupling between two sample paths. A reference to the stochastic coupling technique can be

found in Section 9.2 in Ross [18].

Let p(t) denote the probability that a customer in the queue is red if he has spent t time

units in the queue. Using Bayes’ rule, we can calculate that

p(t) =
pF̄R(t)

pF̄R(t) + (1− p)F̄W (t)
, (1)

where F̄R(t) ≡ 1− FR(t) is the tail distribution function of a red customer’s reneging time,

and F̄W (t) ≡ 1 − FW (t) is that of a white customer’s reneging time. Because both FR and

FW are exponential with respective rates θR < θW , it follows that p(t) increases in t (the first

derivative of Equation (1) is positive). Therefore, we have that p(t1) > p(t2) > · · · > p(tn).

Consider two servers—server A and server B—each facing the state (t1, . . . , tn). Suppose

server B uses a policy φ, in which φ(t1, . . . , tn) = i 6= 1. Consider a policy for server A

as follows: Serve customer 1 first. If server A finds customer 1 to be white and no red

customer has left (unserved) yet, then (1) if customer i is not in the queue, switch to policy

φ thereafter; (2) if customer i is still in the queue, then increment the state variable of
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that customer by t1 − ti (so that customer will be treated as a customer who has spent an

additional t1 − ti time units in the queue) and switch to policy φ thereafter.

Because p(t1) > p(ti), we are able to couple customer 1’s identity and customer i’s identity

in queues A and B in five cases as follows (see Table 1 for a summary). Define a random

variable I to indicate which case takes place, and let X denote the reward for server A, and

Y the reward for server B. For brevity, we use A-i to denote customer i in queue A, and so

on.

Table 1: The identities of customers can be coupled stochastically in five cases, used in the

proof of Theorem 3.1.

Queue A Queue B

Probability Customer 1 Customer i Customer 1 Customer i

(1− p(t1))(1− p(ti)) white white white white

p(t1)p(ti) red red red red

(1− p(t1))p(ti) red white white red

(1− p(t1))p(ti) white red red white

p(t1)− p(ti) red white red white

1. With probability (1 − p(t1))(1 − p(ti)), A-1, A-i, B-1, and B-i are all white. Because

of the memoryless property of exponential distribution, we can couple A-1 and B-i

such that they will renege at the same time. Similarly, we can couple A-i and B-1

such that they will renege at the same time. We further couple the service times for

the two servers such that the kth service initiated by server A takes the same amount

of time as the kth service initiated by server B, k = 1, 2, . . .. Finally, we couple the

identities of the other n−2 customers in the queue and their respective remaining times

to renege, as well as the arrival times of future customers, their identities, and their

reneging times. By doing so, we can see that both queues will follow the same sample

path—except that customer labels 1 and i are swapped in the two queues (server A

will serve customer i in queue A if and only if server B serves customer 1 in queue

B). Consequently, for each sample path, the two servers will earn an identical reward;

therefore, E[X|I = 1] = E[Y |I = 1].
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2. With probability p(t1)p(ti), A-1, A-i, B-1, and B-i are all red. By coupling the sample

paths between the two queues exactly the same way as in case 1, we can see that

servers A and B will earn an identical reward in each sample path. Therefore, we can

conclude E[X|I = 2] = E[Y |I = 2].

3. With probability (1 − p(t1))p(ti), A-1 and B-i are red, while A-i and B-1 are white.

Similar to case 2, we can conclude E[X|I = 3] = E[Y |I = 3].

4. With probability (1 − p(t1))p(ti), A-1 and B-i are white, while A-i and B-1 are red.

Similar to case 2, we can conclude E[X|I = 4] = E[Y |I = 4].

5. With probability p(t1)−p(ti), A-1 and B-1 are red, while A-i and B-i are white. Because

both A-1 and B-1 are red, we can couple A-1 and B-1 such that they will renege at the

same time. Similarly, we can couple A-i and B-i such that they will renege at the same

time. We further couple the service times for the two servers such that the kth service

initiated by server A takes the same amount of time as the kth service initiated by

server B, k = 1, 2, . . .. Finally, we couple the identities of the other n− 2 customers in

the queue and their respective remaining times to renege, as well as the arrival times

of future customers, their identities, and their reneging times. Consider the next event

that occurs.

(a) If the next event to occur is a service completion, then server A earns 1, while

server B may eventually earn 0, r, or 1. The probability server B will earn 0 or r

is nonzero.

(b) If the next event to occur is the reneging of A-1 and B-1, then server A earns r

while server B earns 0.

(c) If the next event to occur is the reneging of A-i and B-i, then server B will choose

another customer to serve. At that point, we can repeat the whole stochastic

coupling argument for cases 1–5 listed in this proof.

(d) If the next event to occur is the reneging of any of the other n − 2 customers,

then both servers will earn 0 if that customer is red. If that reneging customer is

white, then the process continues, and we can consider the next event and repeat

the argument in cases (a)–(e).
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(e) If the first event to occur is the arrival of a new customer, then the process

continues, and we can consider the next event and repeat the argument in cases

(a)–(e).

Consequently, we can see that in each sample path, server A will earn a reward greater

than or equal to what server B will earn. Therefore, E[X|I = 5] > E[Y |I = 5].

Taking all 5 cases together, we can write that

E[X]− E[Y ] =
5∑

k=1

(E[X|I = k]− E[Y |I = k]) · P{I = k} > 0.

Hence, any policy that does not select customer 1 cannot be optimal. Because there are only

n customers to choose from, it must be optimal to select customer 1.

Finally, because the preceding argument applies each time the server becomes available,

it follows that the FCFS rule is optimal. 2

Although Theorem 3.1 holds for an arbitrary value of p, we are particularly interested in

the case when p → 0, because terrorist attacks are rare events. To compute the expected

reward as p → 0, first construct a queue with only white customers arriving according to

a Poisson process with rate λ, and then let a red customer arrive in steady state. We can

obtain a closed-form solution for the expected reward if the service time distribution is also

exponential.

Suppose FS is exponential with rate µ. With white customers arriving according to a

Poisson process with rate λ, the steady-state probability that there are n customers in the

system can be found by a birth-death process (see Chapter 2.9 in Gross and Harris [4] for a

derivation), and is given by

1

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)
, for n = 0, (2)

and ∏n
i=1(

λ
µ+iθW

)

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)
, for n = 1, 2, . . . .

The queue is stable as long as θW > 0, regardless of the values of µ and λ.

If a red customer finds n white customers in the system upon arrival, then the probability

that he will enter service before reneging is the probability that all those n white customers
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depart—either due to impatience or due to service completion—before the red customer

reneges. This probability can be obtained by the memoryless property of the exponential

distribution:
n∏
i=1

(
µ+ iθW

µ+ iθW + θR

)
.

Therefore, with the FCFS rule, the probability that the red customer arriving in steady state

will enter service before reneging is

1

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)
+
∞∑
n=1

[( ∏n
i=1(

λ
µ+iθW

)

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)

) n∏
i=1

(
µ+ iθW

µ+ iθW + θR

)]
.

=
1 +

∑∞
k=1

∏k
i=1(

λ
µ+iθW +θR

)

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)
(3)

Once the red customer enters service, we can deduce, once again due to the memoryless

property of exponential distribution, that the service will complete before the red customer

reneges with probability µ/(µ + θR). Consequently, the expected reward for the FCFS rule

is Equation (3) multiplied by
µ+ rθR
µ+ θR

.

3.2 Last-Come-First-Serve (LCFS) Rule

With the LCFS rule, the server always serves the customer who most recently joined the

queue. Somewhat surprisingly, the counterpart of Theorem 3.1 when θR > θW is not true

even if FS is also exponential. For example, if there is only one customer in the queue, and

that customer has been in the queue for a long time (so that the customer is most likely

white), then the server may prefer waiting for the next new arrival rather than serving that

very old customer, as shown in the next example.

Example 3.1

Suppose λ = µ = 1, θR = 10, θW = 0.1, and p = 0.8. Consider a situation when there is only

one customer in the queue—referred to as customer Z throughout this example—who joined

the queue one time unit ago. According to Equation (1), customer Z is a red customer with

probability p(1) ≈ 0.0002.

With the LCFS rule, the server initiates service with customer Z. Let X denote the

reward received by the server with the LCFS rule. Compute P{X = 0} by conditioning on
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the identity of customer Z:

P{X = 0} = p(1)P{X = 0|Z is red}+ (1− p(1))P{X = 0|Z is white}

> 0 + (1− p(1))
λ

λ+ µ+ θW
p

θR
µ+ θW + θR

, (4)

where the inequality follows because conditional on customer Z being white, X = 0 as long

as the following three events occur sequentially: (1) a new customer arrives before customer

Z departs (whether due to impatience or due to service completion); (2) the new customer

is red; and (3) the new customer reneges (unserved) before customer Z departs.

To get upper bounds for P{X = r} and P{X = 1}, respectively, note that to get

a positive reward, the server needs to select a red customer at some point. Once that

happens, there is still a chance for another red customer to renege before the red customer

in service departs—either due to impatience (reward r) or due to service completion (reward

1). However, if the process does end because the red customer in service departs, then

the probabilities whether the ending is due to impatience or due to service completion are

proportional to their respective exponential rates θR and µ. Therefore, we can conclude that

P{X = r}
P{X = 1}

=
θR
µ
.

Hence, we have that

E[X] = 1 · P{X = 1}+ r · P{X = r}+ 0 · P{X = 0}

= (1− P{X = 0}) µ

µ+ θR
+ r(1− P{X = 0}) θR

µ+ θR

<
(

1− (1− p(1))
λ

λ+ µ+ θW
p

θR
µ+ θW + θR

)
µ+ rθR
µ+ θR

≈ 0.05972(1 + 10r), (5)

where the inequality follows from Equation (4).

An alternative policy is for the server to stay idle until a new customer arrives, and then

immediately serve the newly arrived customer. Let Y denote the reward under this policy.

Compute P{Y = 1} by conditioning on the identity of customer Z:

P{Y = 1} = p(1)P{Y = 1|Z is red}+ (1− p(1))P{Y = 1|Z is white}

> 0 + (1− p(1)) p
µ

λ+ µ+ θR
,
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where the inequality follows because conditional on customer Z being white, the server will

receive a reward of 1 as long as the first arrival is a red customer, and the service for that

red customer completes before the red customer reneges and before another new customer

arrives. Similarly, we have that

P{Y = r} > (1− p(1)) p
θR

λ+ µ+ θR
.

Therefore,

E[Y ] = 1 · P{Y = 1}+ r · P{Y = r}+ 0 · P{Y = 0}

> (1− p(1)) p
µ+ rθR

λ+ µ+ θR
≈ 0.06665(1 + 10r). (6)

From Equations (5) and (6), we can conclude that E[Y ] > E[X] for any r ∈ [0, 1], which

implies that the LCFS rule is not optimal. 2

Similar to the FCFS rule discussed in Section 3.1, we let p→ 0 and calculate the expected

reward under the LCFS rule. As p→ 0, we can find this probability by first constructing a

queue with only white customers and letting a red customer arrive in steady state. We first

calculate the probability that the red customer arriving in steady state will enter service

before reneging.

Note that if the server is idle when a red customer arrives, then the red customer enters

service immediately. If the server is busy when a red customer arrives, then with the LCFS

rule, the current number of white customers in the system is irrelevant to whether the red

customer will enter service before reneging. In this case, we construct a Markov chain to

represent the state of the system when a red customer is present. Denote by k the state

if the server is busy with a white customer, and there are k − 1 white customers in the

queue behind the red customer, k = 1, 2, . . .. Let the state become 0 when the red customer

enters service, and −1 when the red customer reneges before entering service. Note that by

definition, states 0 and −1 are absorbing, and that the Markov chain starts in state 1.

Let αk, k = 1, . . . ,∞, denote the probability that the Markov chain in state k will ever

enter state k − 1 before entering state −1 (the red customer reneges unserved). We need to

determine α1, the probability that a red customer will enter service before reneging if the

server is busy upon his arrival.
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To obtain α1, we first find an expression for αk by conditioning on whether the next

event is a new arrival, a departure of a white customer, or the departure of the unserved red

customer:

αk =
λ

θR + λ+ µ+ kθW
· αk+1αk +

µ+ kθW
θR + λ+ µ+ kθW

· 1 +
θR

θR + λ+ µ+ kθW
· 0,

for k = 1, 2, . . .. Solving for αk yields

αk =
µ+ kθW

θR + λ+ µ+ kθW − λαk+1

. (7)

Because αk+1 ∈ [0, 1], the preceding implies that

µ+ kθW
θR + λ+ µ+ kθW

< αk <
µ+ kθW

θR + µ+ kθW
. (8)

Consequently, we can choose a large value of k, use Equation (8) to bound αk, and then use

Equation (7) to recursively compute the bounds for αk−1, αk−2, . . . , α1. Because the bounds

converge very quickly, we can approximate α1 satisfactorily.

Finally, we can compute the probability that the red customer enters service before

leaving under the LCFS rule by

1 · P{server idle in steady state}+ α1 · P{server busy in steady state}

=
1

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)
+ α1

(
1− 1

1 +
∑∞
k=1

∏k
i=1(

λ
µ+iθW

)

)
, (9)

where the steady-state probability is given by Equation (2). With the same reason given at

the end of Section 3.1, the expected reward with the LCFS rule is Equation (9) multiplied

by
µ+ rθR
µ+ θR

.

3.3 Random Selection (RS) Rule

Another service rule of interest is the RS rule, in which the server, when becoming available,

randomly selects a customer in the queue to serve. If both reneging times are exponentially

distributed and θR = θW , then all three rules—FCFS, LCFS, and RS—perform equally well

for two reasons: (1) each customer in the queue has a probability p of being red regardless

of the amount of time he has spent in the queue; and (2) the remaining times to renege

for all customers in the queue are independent and identically distributed because of the
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memoryless property of the exponential distribution. If θR 6= θW , we would expect that the

performance of the RS rule lies between those of the FCFS and the LCFS rules.

As p → 0, we can formulate a Markov chain to compute the expected reward of the RS

rule similar to that in Sections 3.1 and 3.2. We omit the derivation. To compare the three

service rules, note that in order for the server to earn a positive reward, the red customer

arriving in steady state (of a system that consists of only white customers) needs to enter

service before reneging. If the red customer does enter service, then the expected reward

becomes (µ + rθR)/(µ + θR) as derived at the end of Section 3.1. Therefore, the relative

performance among the three rules is independent of r—the reward of partial success. For

this reason, to compare the three service rules when p → 0, we plot in Figures 1 and 2 the

probability that the arriving red customer will ever enter service before reneging—namely

Equation (3) for the FCFS rule and Equation (9) for the LCFS rule.

As seen in Figures 1 and 2, the FCFS rule is the best of the three when θR < θW (in

this case, the FCFS is optimal by Theorem 3.1), while the LCFS rule is the best when

θR > θW . Examples of arenas for the case θR < θW include the vending machine corners,

walkways, stairs, and parking lots, where a typical visitor tends to leave fairly soon. In this

case, although the FCFS rule is optimal, its performance is quite sensitive to the changes in

either θW or θR. Examples for the case θR > θW include department stores, public parks,

picnic areas, and other places where a typical visitor tends to spend a long time. In this case,

although the LCFS rule is not optimal, its performance is relatively robust to the change in

θW and θR, especially when θR ≈ θW . This observation suggests that if the value of θR is

highly uncertain—as θW is typically much easier to estimate—then the LCFS rule may be

preferred.

3.4 Preemptive Service

Our queueing model assumes that the service is nonpreemptive because the screening process

of a suspect cannot be interrupted. Although preemptive service—whereby the server can

interrupt the current screening and switch to another customer upon a new arrival or any

departure—may not be a practical assumption, we are interested in such a variation from a

theoretical standpoint. This subsection presents a theorem that complements Theorem 3.1

in the nonpreemptive service case.
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Figure 1: Comparison of three service rules when the expected reneging time for a white

customer varies. FR, FW , and FS are all exponential; p→ 0, λ = 2, 1/θR = 6, and 1/µ = 2.

Theorem 3.2 If the service is preemptive, and both FR and FW are exponential with re-

spective rates θR < θW (respectively, θR > θW ), then the FCFS (respectively, LCFS) rule is

optimal for an arbitrary arrival process if FS is exponential.

Proof: We prove the optimality of the LCFS rule when θR > θW , while the proof for the

optimality of the FCFS rule when θR < θW follows a similar argument.

Consider two servers—server A and server B—each facing the state (t1, t2, . . . , tn), such

that t1 > t2 > · · · > tn. Suppose server B uses a policy φ, in which φ(t1, . . . , tn) = i 6= n.

Consider a feasible policy for server A as follows: Start service with customer n and continue

until an arrival or a departure; thereafter switch to policy φ unless that event is the departure

of a red customer (in which case the process ends). Let X denote the reward for server A,

and Y the reward for server B. To prove the theorem, we will show that E[X] > E[Y ].
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Figure 2: Comparison of three service rules when the expected reneging time for a red

customer varies. FR, FW , and FS are all exponential; p→ 0, λ = 2, 1/θW = 6, and 1/µ = 2.

Recall from Equation (1) that p(t) denotes the probability that a customer is red if he

has spent t time units in the queue. Because θR > θW and t1 > t2 > · · · > tn, it follows

that p(t1) < p(t2) < · · · < p(tn). We couple customer n’s identity and customer i’s identity

in queues A and B in the following four cases, and define a random variable I to indicate

which case takes place. For brevity, we use A-i to denote customer i in queue A, and so on.

1. With probability p(tn)p(ti), A-i, A-n, B-i, and B-n are all red: Because the times to

renege for red customers follow independent exponential distribution with rate θR, it

follows that E[X|I = 1] = E[Y |I = 1].

2. With probability (1− p(tn))(1− p(ti)), A-i, A-n, B-i, and B-n are all white: Similar to

case 1, because the times to renege for white customers follow independent exponential
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distribution with rate θW , it follows that E[X|I = 2] = E[Y |I = 2].

3. With probability (1 − p(tn))p(ti), A-n and B-n are white, while A-i and B-i are red:

We couple A-n and B-n such that they will renege at the same time. Similarly, we

couple A-i and B-i such that they will renege at the same time. We further couple

the service times for the two servers such that the kth service initiated by server A

takes the same amount of time as the kth service initiated by server B, k = 1, 2, . . ..

Consider the next event that takes place. If the next event is service completion, then

X = 0 and Y = 1. If the next event is the reneging of A-i and B-i, then X = 0 and

Y = r. If the next event is neither of the above, then the two servers will receive the

same reward eventually. Therefore,

E[Y |I = 3]− E[X|I = 3] > 0.

4. With probability (1 − p(ti))p(tn), A-n and B-n are red, while A-i and B-i are white:

We can couple the two systems similarly to case 3. Because the situation is reverse to

that in case 3, however, it follows that

E[X|I = 4]− E[Y |I = 4] = E[Y |I = 3]− E[X|I = 3] > 0.

With these 4 cases, we can conclude that

E[X]− E[Y ] =
4∑

k=1

(E[X|I = k]− E[Y |I = k]) · P{I = k}

= (E[X|I = 4]− E[Y |I = 4]) · ((1− p(ti))p(tn)− (1− p(tn))p(ti))

= (E[X|I = 4]− E[Y |I = 4]) · (p(tn)− p(ti)) > 0,

and the result follows. 2

Note that contrary to Theorem 3.1, Theorem 3.2 does not hold for an arbitrary service

time distribution FS. A counterexample can be constructed intuitively as follows. Suppose

that FR and FW are exponential with respective rates θR < θW , and that FS has a decreasing

failure rate—that is, fS(t)/F̄S(t) decreases in t, for t > 0—so that the longer a customer has

been in service, the longer (stochastically) his remaining service time becomes (for example,

see Proposition 9.1.3 in Ross [18]). Granted, with the FCFS rule, the server always serves

the customer who has the highest probability of being red. However, after serving the same
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customer for a long time without a conclusion, the remaining service time tends to be even

longer (in the regular stochastic sense). At that point, the server may prefer to switch to

another customer for a fresh service time, even though this other customer is less likely a

red customer.

4 General Reneging Time Distributions

This section presents the case when FR and FW do not follow exponential distributions. In

Subsection 4.1, we explain why it is difficult to find the optimal policy for general reneging

time distribution. In Subsection 4.2, we develop a heuristic policy. In Subsection 4.3, we use

Monte Carlo simulation to numerically evaluate the heuristic policy.

4.1 Special Cases and Counterexamples

We first investigate whether we can relax the exponential assumption on FR and FW so that

the FCFS rule remains optimal under weaker conditions. Intuitively, for the FCFS rule to

be optimal, two conditions need to hold: (a) the longer a customer has spent in the queue,

the more likely he is a red customer; and (b) the longer a white customer has spent in the

queue, the sooner he tends to leave the queue according to his reneging distribution so as to

save the server’s time.

For condition (a) to hold, we need p(t) in Equation (1) to increase in t. Calculus shows

that for p(t) to increase in t, a sufficient condition is that FR has a smaller failure rate than

FW ; in other words,
fR(t)

F̄R(t)
≤ fW (t)

F̄W (t)
, for t > 0, (10)

where f and g are the density functions and F̄R and F̄W are the tail distribution functions.

For condition (b) to hold, we need the random variable (W − t |W > t) to decrease in t in

the regular stochastic sense, where W denotes a random variable with distribution function

FW . That is, we need

P{W − t > s|W > t} =
F̄W (t+ s)

F̄W (t)

to decrease in t for all s > 0. Calculus shows that an equivalent condition for the preceding
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to hold is for FW to have an increasing failure rate; that is,

fW (t)

F̄W (t)
increases in t, for t > 0. (11)

Before imposing a condition on the failure rate of FR, consider two special cases, r = 0 and

r = 1, to further simplify the problem.

The case r = 0

In the special case r = 0, the server gets no reward for a partial success, so it is useless to

initiate service for a red customer if the server cannot complete the service before the red

customer reneges. In order to make the FCFS rule more attractive, it seems intuitive to

impose the assumption that the longer a red customer has spent in the queue, the longer

his additional reneging time tends to be. In other words, we need the random variable

(R − t |R > t) to increase in t in the regular stochastic sense, where R denotes a random

variable with distribution function FR. Similar to the derivation of Equation (11), the

preceding is equivalent to the following:

fR(t)

F̄R(t)
decreases in t, for t > 0. (12)

A plausible conjecture is that when r = 0, the FCFS rule is optimal if Equations (10)–(12)

hold. The following example, however, disapproves this conjecture.

Example 4.1

Let r = 0. Suppose that the reneging time of a white customer is exponentially distributed

with rate equal to 1, and that of a red customer has the following failure rate function:

fR(t)

F̄R(t)
=

 1, for 0 ≤ t < 2,

0.01, for t ≥ 2.

It is straightforward to verify that Equations (10)–(12) are satisfied. Also suppose that

p = 0.5, and the service time distribution FS is deterministic and equal to 0.5. In addition,

let λ = 0.0001 so that the effect of future arrivals is negligible. Consider a scenario when

the server finds two customers in the queue with t1 = 2 and t2 = 1.

Compare two service orders 1, 2 (FCFS) and 2, 1. If both customers are white, then with

either service order the process continues after both customers depart. If at least one of the

two customers is red, then the process ends when (or before) both customers depart. Using
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Monte Carlo simulation, it turns out that, conditional on at least one customer is red, the

expected reward is 0.671 for service order 1, 2, and 0.734 for service order 2, 1 (standard

error less than 3 × 10−5). Because it is optimal to serve customer 2, the FCFS rule is not

optimal. 2

To intuitively understand Example 4.1, note that p(t1) = p(t2) = 0.5. If both customers

are red, then it does not make any difference to start with either customer, because to get a

reward of 1 (r = 0), the server must complete the service before either red customer reneges.

If customer 1 is red and customer 2 is white, then customer 1’s additional reneging time

follows an exponential distribution with mean equal to 100 time units. By starting with

customer 2, the server most likely will be able to serve out customer 1 after customer 2

reneges. On the other hand, if customer 1 is white and customer 2 is red, the server has a

much smaller chance to serve out customer 2 by starting with customer 1.

The case r = 1

Consider the second special case when r = 1, so that a partial success is as good as a full

success. In this case, the server always hopes the customer in service to renege as soon

as possible. To make the FCFS rule attractive when r = 1, it is intuitive to impose the

assumption that the longer a red customer has spent in the queue, the sooner he tends to

renege. In other words, we assume that

fR(t)

F̄R(t)
increases in t, for t > 0, (13)

which is the opposite to Equation (12). Hence, a plausible conjecture is that when r = 1,

the FCFS rule is optimal if Equations (10), (11), and (13) hold. The next example, however,

disapproves this conjecture.

Example 4.2

Let r = 1. Suppose that FR and FW are identical with the following failure rate function:

fR(t)

F̄R(t)
=
fW (t)

F̄W (t)
=


0, for 0 ≤ t < 2,

1, for 2 ≤ t < 4,

10000, for t ≥ 4.
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It is straightforward to verify that Equations (10), (11), and (13) are satisfied. Also suppose

that the probability of a red customer is p = 0.5. Because FR and FW are identical, the

server cannot learn about a customer’s identity from the amount of time the customer has

spent in the queue. Hence, p(t) = p = 0.5 for all t > 0.

Suppose there are three customers with t1 = 2.99, t2 = 2.01, and t3 = 1, and that the

service time distribution FS is deterministic and equal to 1. In addition, assume λ = 0.0001

so that the effect of future arrivals is negligible. Compare two service orders 1, 2, 3 (FCFS)

and 2, 1, 3. If all three customers are white, then with either service order the process

continues after all three customers depart. If at least one of the three customers is red, then

the process ends when (or before) all three customers depart. Using Monte Carlo simulation,

it turns out that, conditional on at least one customer is red, the expected reward is 0.720

for the service order 1, 2, 3, and 0.752 for the service order 2, 1, 3 (standard error less than

5× 10−5). Therefore, it is better to start with customer 2 rather than with customer 1, and

the FCFS rule is not optimal. 2

To gain some intuition about this example, first note that the failure rate function remains

a constant for 2 ≤ t < 4, and the service time is deterministic and equal to 1. Because

[ti, ti + 1] ⊂ [2, 4) for i = 1, 2, the time it takes for the server to become available is

identically distributed regardless of whether the server starts with customer 1 or customer

2. In addition, if the server starts with customer 1, the probability that customer 2 is still

in the queue when the server becomes available is the same as the probability that customer

1 is still in the queue if the server starts with customer 2. Consequently, the number of

customers between customers 1 and 2 that the server can serve by following the order 2, 1,

3 is identically distributed to that number when the server follows the order 1, 2, 3.

However, by starting with customer 2, the time it takes for the server to become available

for customer 3 is stochastically smaller than by starting with customer 1, because as soon as

a customer spends 4 time units in the queue, he will leave almost immediately. Consequently,

by starting with customer 2, the server has a better chance to serve customer 3.

Examples 4.1 and 4.2 show that even in the special cases when r = 0 and r = 1, the

FCFS rule is not optimal under some plausible conditions. To determine the optimal policy

for an arbitrary r can only be more difficult. Therefore, we next turn our attention to a

heuristic policy.
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4.2 Heuristic Policy

To develop a heuristic policy, consider a related problem in which the process does not stop

when a red customer departs for the first time. Instead, the process continues indefinitely, and

the server’s goal is to maximize the long-run average reward earned from each red customer.

Note that as p → 0, this related problem and the original problem become equivalent,

because in either problem the objective function is to maximize the expected reward earned

from a red customer that arrives in steady state of a queueing system consisting of only

white customers that arrive according to a Poisson process with rate λ.

Based on this observation, we propose a heuristic policy where the server chooses the

customer with the highest reward rate—the ratio between the expected reward and the

expected time spent if the customer is served. Let R, W , and S denote random variables

with respective probability distribution functions FR, FW , and FS. Suppose a customer has

spent t time units in the queue, then serving that customer yields a reward rate equal to

γ(t) ≡ E[reward received from serving a customer who has spent t time units in queue]

E[time spent on serving a customer who has spent t time units in queue]

=
p(t) · (P{R− t > S|R > t}+ rP{R− t ≤ S|R > t}) + (1− p(t)) · 0
p(t)E[min(R− t, S)|R > t] + (1− p(t))E[min(W − t, S)|W > t]

,

where p(t) is given by Equation (1), the probability a customer is red if he has spent t time

units in the queue. As p → 0, we can compare the reward rate between any two customers

by

lim
p→0

γ(t1)

γ(t2)
=

(
F̄R(t1)(r + (1− r)P{R− t1 > S|R > t1})

F̄W (t1)E[min(W − t1, S)|W > t1]

)
(
F̄R(t2)(r + (1− r)P{R− t2 > S|R > t2})

F̄W (t2)E[min(W − t2, S)|W > t2]

) . (14)

Therefore, we define a score function for a t-time-unit-old customer as

s(t) ≡ F̄R(t)(r + (1− r)P{R− t > S|R > t})
F̄W (t)E[min(W − t, S)|W > t]

, (15)

and let the server choose the customer who has the highest score.

To further compute Equation (15), we calculate

P{R− t > S|R > t} =
∫ ∞
0

P{R− t > x|R > t}fS(x)dx

=
∫ ∞
0

F̄R(t+ x)

F̄R(t)
fS(x)dx, (16)
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and

E[min(W − t, S)|W > t] =
∫ ∞
0

P{min(W − t, S) > x|W > t}dx

=
∫ ∞
0

P{W − t > x and S > x|W > t}dx

=
∫ ∞
0

P{W − t > x|W > t}P{S > x|W > t}dx

=
∫ ∞
0

F̄W (t+ x)

F̄W (t)
F̄S(x)dx. (17)

Consequently, putting Equations (15)–(17) together gives

s(t) =
rF̄R(t) + (1− r)

∫∞
0 F̄R(t+ x)fS(x)dx∫∞

0 F̄W (t+ x)F̄S(x)dx
. (18)

The score in Equation (18) is computed for each customer individually, based on the

time a customer has spent in the queue. One advantage of this score is that it is easy to

compute. In practice, we can compute the score s(t) for all values of t beforehand, which

allows easy implementation in real time. Observe that a customer’s score does not depend

on the number of other customers in the queue nor the customer arrival rate λ. Therefore,

this heuristic cannot be optimal in general. In particular, when the traffic is relatively light,

the server should take into account the possibility of becoming idle when the queue is empty,

rather than always choosing the customer that yields the highest reward rate. Hence, in

a light-traffic system it is possible to devise a policy that is specifically tailored for given

distributions FR, FW , and FS. On the other hand, in a surveillance system under heavy

traffic—the case we expect to see in applications—there are many customers to choose from

each time the server becomes available. Because the server would be kept busy most of

the time, it should focus on selecting the customer that yields the highest reward rate.

Consequently, we expect our heuristic policy to be effective in a heavy-traffic system.

When FR, FW , and S follow exponential distributions with respective rates θR, θW , and

µ, the score function in Equation (18) becomes

s(t) = (θW + µ)
(
rθR + µ

θR + µ

)
e−(θR−θW )t.

When θR < θW , the preceding increases in t, so the heuristic policy coincides with the

FCFS rule—the optimal policy according to Theorem 3.1. When θR > θW , the heuristic

policy coincides with the LCFS rule—an intuitively good policy although not optimal due

to Example 3.1.
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4.3 Numerical Experiments

This subsection presents a numerical example. Let FR follow the Erlang distribution with

shape parameter 6 and scale parameter 1, and FW the Erlang distribution with shape pa-

rameter 2 and scale parameter 3. We choose the two distributions to have the same expected

value, namely 6, because if they are much different, the heuristic policy resembles either the

FCFS rule or the LCFS rule. We also choose the distributions so that FW has a larger

variance, because the purposes of visit are much diversified for white customers. The choice

of Erlang distribution is primarily due to its unimodal density function. The service time

is largely deterministic, but we let FS follow a uniform distribution to allow for a small

variance.

Instead of varying r, we plot the score function in Equation (18) for r = 0 in Figure 3,

and for r = 1 in Figure 4. Because s(t) is a linear function in r, for an arbitrary r ∈ [0, 1],

the score function is basically a weighted average between these two extreme cases.

In the case r = 0, the server does not earn any reward if a red customer reneges during

service. As seen in Figure (3), when FS ∼ U(0.5, 1.5), the score function s(t) largely coincides

with
p(t)

p(0)
=

F̄R(t)

pF̄R(t) + (1− p)F̄W (t)
≈ F̄R(t)

F̄W (t)
, as p→ 0.

In other words, when the service time is small, the server selects the next customer primarily

based on the likelihood of the customer being red, because most likely the service will

complete before the customer reneges. When the service time is large, however, it becomes

less desirable to serve a customer who has spent longer in the queue (Erlang distribution

has an increasing failure rate), because the chance of reneging during service becomes larger.

When FS ∼ U(7.5, 8.5), the service time is so great that the heuristic policy coincides with

the LCFS rule.

In the case r = 1, the server earns a reward of 1 for a partial success. As seen in Figure 4,

s(t) still follows a similar shape to F̄R(t)/F̄W (t) when FS ∼ U(0.5, 1.5). When the service

time becomes larger, the peak of s(t) shifts to the right slightly. A customer who has spent

a longer time in the queue becomes more attractive because the server can save time if it is

a white customer; in addition, the server does no need to complete service to earn a reward

of 1 if it is a red customer.

We next compare the performance of the heuristic policy with the other three naive service

24



0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time a customer has spent in the queue t

Sc
or

e 
fu

nc
tio

n 
s(

t)

 

 
U(0.5,1.5)
U(1.5,2.5)
U(3.5,4,5)
U(7.5,8.5)

Figure 3: Score function s(t) for r = 0; FR ∼ Erlang(6, 1), FW ∼ Erlang(2, 3), and FS

follows four different uniform distributions.

rules—FCFS, LCFS, and RS rules—using the same example. To simulate the performance

of a policy, note that as p → 0, a red customer will arrive in steady state of a queueing

system that consists of only white customers arriving according to a Poisson process with

rate λ. However, it is inefficient to collect only one estimate each time we generate a steady

state. To overcome this issue, we generate a sample path of the queueing system where white

customers arrive according to a Poisson process with rate λ for the first n (a large number)

arrivals, and let the server process customers according to a given service rule—FCFS, LCFS,

RS, or heuristic. After generating the sample path, we turn our attention to each customer

one at a time. For the jth arriving customer, define the random variable Zj as the reward

the server would have earned had customer j been a red customer, while all other customers

remain white. Hence, our estimator is (
∑n
j=1 Zj)/n.
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Figure 4: Score function s(t) for r = 1; FR ∼ Erlang(6, 1), FW ∼ Erlang(2, 3), and FS follows

four different uniform distributions.

Our simulation algorithm uses steady-state simulation to collect multiple estimates in

a single simulation run. There are two issues related to a steady-state simulation. First,

there is initial bias because the system is not in steady state when we start the simulation

with an empty queue. Second, the random variables Zj and Zj+1 are not independent. If

Zj = 0, it becomes more likely for the queue to have many customers, which in turn makes

Zj+1 more likely to also take on value 0. To resolve these two issues, we allow a prolonged

warm-up period before collecting data, and use batch means to estimate the standard error

of our estimate; see, for example, Law and Kelton [12]. We choose the batch size so that

with probability close to 1 the first customers in consecutive batches will never coexist in

the system.

In the simulation experiment, we choose FS ∼ U(1.5, 2.5), and simulate three cases for
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r = 0, 0.5, and 1. Table 2 compares the expected reward as p → 0 for four policies when

the arrival rate λ varies from 1 to 5. In each case, we use a sufficiently large n so that

the standard error is about 10−3 of the estimate. We choose the performance of the RS

rule as the benchmark, and report the performance of the other three rules as ratios to the

benchmark.

Table 2: Expected reward for different policies as p → 0; FR ∼ Erlang(6, 1), FW ∼
Erlang(2, 3), and FS ∼ U(1.5, 2.5).

Ratio to RS Rule

r λ RS RS FCFS LCFS Heuristic

1 0.464 1.000 0.927 1.076 1.096

2 0.217 1.000 0.617 1.210 1.233

0 3 0.141 1.000 0.417 1.243 1.273

4 0.104 1.000 0.299 1.260 1.294

5 0.083 1.000 0.228 1.270 1.304

1 0.538 1.000 1.028 0.987 1.082

2 0.264 1.000 0.821 1.028 1.170

0.5 3 0.173 1.000 0.610 1.033 1.197

4 0.128 1.000 0.473 1.039 1.211

5 0.102 1.000 0.374 1.042 1.223

1 0.612 1.000 1.106 0.922 1.132

2 0.311 1.000 0.963 0.900 1.230

1 3 0.205 1.000 0.747 0.890 1.257

4 0.153 1.000 0.586 0.888 1.270

5 0.122 1.000 0.473 0.886 1.278

As seen in Table 2, the heuristic policy always yields the highest expected reward. In

addition, the heuristic policy’s relative improvement over the RS rule gradually increases as

λ increases. This observation is not surprising, as we argued in Section 4.2 that the heuristic

policy is particularly suitable in a heavy-traffic system, in which the server can often select

a high-score customer from a full spectrum of customers.
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The FCFS rule performs well when λ = 1, especially in the case r = 1. As seen in

Figure 4, the score function s(t) (FS ∼ U(1.5, 2.5)) increases when t is small. When λ is

small, often there are only a few customers who are new to the system, so the FCFS rule

often selects the same customer as does the heuristic policy. When λ = 5, however, often

the queue is full of customers, many of which have spent a long time in the queue. In that

case, the FCFS rule would select a customer that has been in the queue for a long time,

whereas the heuristic policy tends to select a customer who has spent about 4 time units in

the queue. For r = 0 and r = 0.5, the FCFS rule also performs poorly for λ = 5, because

s(t) is decreasing for larger values of t.

The LCFS rule performs relatively well in the case r = 0, because in Figure 3 the score

function s(t) (FS ∼ U(1.5, 2.5)) is largely decreasing in t, so the LCFS rule and the heuristic

policy often makes the same decision. In the case r = 1, s(t) in Figure 4 is unimodal with

the maximum occurring about 4. When λ increases, the LCFS rule often selects a customer

that just entered the queue, while the heuristic policy tends to select a customer that has

spent about 4 time units in the queue. Therefore, the performance of the LCFS rule drops

as λ increases.

5 Concluding Remarks

In this paper we developed a single-server queueing model with impatient customers to study

a surveillance system aimed at detecting terrorists in real time. Two types of customers—

terrorist and nonterrorist—arrive at the system, but a customer does not reveal his identity

upon arrival. The server, however, can draw inference about a customer’s likely identity

based on the time the customer stays in the system. We presented a few cases in which the

optimal policy can be explicitly determined, and studied a heuristic policy that performs

well in a heavy-traffic system.

Because our study focused on the scheduling aspect of the screening operation, we as-

sumed that the surveillance system has perfect sensitivity and perfect specificity. If the

surveillance system would erroneously classify a terrorist as a nonterrorist (false negative)

with a certain probability, then the performance of the surveillance system described in this

paper would simply be discounted by that probability. If false positive errors are also possi-

ble, then the actions taken by the authorities would incur a social cost associated with the
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disruption of normal daily life. This cost, however, is typically much smaller than that of a

successful terrorist attack.

There are a few related research directions that can follow from our study. First, it is

possible to extend the queueing model to allow multiple servers and more than two types

of customers (catching a terrorist is more rewarding than catching a criminal fugitive).

Second, the probability of classification errors can be modeled as a function of the time a

target is under surveillance. The longer the surveillance system monitors a target, the more

likely the classification will be correct. In this case, the service time becomes a controlled

variable rather than a random parameter. We believe that mathematical modeling along

these research lines has the potential to advance the effort on counterterrorism and homeland

security.
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